Extended formulations for Gomory Corner polyhedra
نویسندگان
چکیده
We present several types of extended formulations for integer programs, based on irreducible integer solutions to Gomory’s group relaxations. We present an algorithm based on an iterative reformulation technique using these extended formulations. We give computational results for benchmark problems, which illustrate the primal and dual effect of the reformulation.
منابع مشابه
Origin and early evolution of corner polyhedra
Corner Polyhedra are a natural intermediate step between linear programming and integer programming. This paper first describes how the concept of Corner Polyhedra arose unexpectedly from a practical operations research problem, and then describes how it evolved to shed light on fundamental aspects of integer programming and to provide a great variety of cutting planes for integer programming. ...
متن کاملAn extension of disjunctive programming and its impact for compact tree formulations
In the 1970’s, Balas [2, 4] introduced the concept of disjunctive programming, which is optimization over unions of polyhedra. One main result of his theory is that, given linear descriptions for each of the polyhedra to be taken in the union, one can easily derive an extended formulation of the convex hull of the union of these polyhedra. In this paper, we give a generalization of this result ...
متن کاملCorner Polyhedra and Maximal Lattice-free Convex Sets : A Geometric Approach to Cutting Plane Theory
Corner Polyhedra were introduced by Gomory in the early 60s and were studied by Gomory and Johnson. The importance of the corner polyhedron is underscored by the fact that almost all “generic” cutting planes, both in the theoretical literature as well as ones used in practice, are valid for the corner polyhedron. So the corner polyhedron can be viewed as a unifying structure from which many of ...
متن کاملSome continuous functions related to corner polyhedra, II
The group problem on the unit interval is developed, with and without continuous variables. The connection with cutting planes, or valid inequalities, is reviewed. Certain desirable properties of valid inequalities, such as minimality and extremality are developed, and the connection between valid inequalities for P(I, u 0) and P+(I, u 0) is developed. A class of functions is shown to give extr...
متن کاملStable sets, corner polyhedra and the Chvátal closure
In this work, we consider a classical formulation of the stable set problem. We characterize its corner polyhedron, i.e. the convex hull of the points satisfying all the constraints except the non-negativity of the basic variables. We show that the non-trivial inequalities necessary to describe this polyhedron can be derived from one row of the simplex tableau as fractional Gomory cuts. It foll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Optimization
دوره 1 شماره
صفحات -
تاریخ انتشار 2004